Great Pyramids of Giza

Azeem Ahmed

What is Pi (TI) and Phi (Φ)

- $\mathrm{Pi}(\pi \pi)=$ the ratio of the circumference of a circle to its diameter
- $\mathrm{Pi}=3.14 \ldots$
- Irrational number thus the decimal doesn't end nor is repetitive
- Phi $(\Phi)=$ the ratio of line segments when a line is divided in a very unique way
- $\operatorname{Phi}=1.68$
- Irrational number

Deriving Pi (π)

Deriving Pi (itc)

Deriving Pi (itu)

$$
\begin{gathered}
A D \perp B C \\
B D=D C
\end{gathered}
$$

Angin betweqn/ $=13 / 90 / \mathrm{n}$

Sin 0802

PerimeREr=BD SiDC(180/n)

When BG-12:ł3a10582

$$
\operatorname{side}=\operatorname{Sin} \theta
$$

When rBE242 3.13262
When $\mathrm{n}=576$: $\mathbf{3 . 1 4 1 5 7}$
When $\mathrm{n}=100,000$: $\mathbf{3 . 1 4 1 5 9}$

$$
B C=\operatorname{Sin} \theta
$$

Perimeter $=\mathbf{n}($ sides $) \mathbf{x}$ side length
Perimeter $=\mathbf{n} \cdot \boldsymbol{\operatorname { S i n }} \boldsymbol{\theta}$

Deriving Phi (Φ)

Assume $\mathbf{a}>\mathbf{b}$
$a \& b>0$
Let $\Phi=a / b$

$$
\begin{array}{ll}
a / b & =(a+b) / a \\
a / b & =(a / a)+(b / a) \\
\Phi & =1+(1 / \Phi) \\
(\Phi) \Phi & =(1+(1 / \Phi))(\Phi) \\
\Phi^{\wedge} 2 & =\Phi+1 \\
\Phi^{\wedge} 2-\Phi-1 & =0 \\
\Phi & =(1 \pm \sqrt{ }(5)) 2 \\
\Phi & =(1+\sqrt{ }(5)) 2=1.618034 \ldots \\
\Phi & =(1-\sqrt{ }(5)) 2<0
\end{array}
$$

Pyramid of Giza
Base Width $=230.4 \mathrm{~m}$
Height $=146.5 \mathrm{~m}$
h:b $=0.636$
$0.0367 \mathbf{m}$ difference $=0.025 \%$ difference

This means:
Pyramid Base Width = 2
Height $=\sqrt{ } \Phi=1.272$
h:b $=0.636$
$\Phi+1=\boldsymbol{\Phi}^{\wedge} \mathbf{2}$
$1.618+1=(1.618)^{\wedge} 2=2.618$

Pi ($\pi t)$ Based Pyramid

Pyramid with base width 2:
Perimeter of base $=4 w=8$ units
Circle with circumference of 8:

sanhinmathod applied to the dindelinsins of the Pyramid of Giza:
\% Error for Calculated 27t Ooh4pandidftoerctadlet meen keigheof both pyramid and semi circle

Phi (Φ) Based Pyramid

Surface area of base $=\mathbf{w n}^{\boldsymbol{\wedge}} \mathbf{2}=\mathbf{4}$
Area of face $=1 / 2 h b=1 / 2(\Phi)(2)=\Phi$
Divide $A(b)$ by $\mathbf{4 (A (f))}=\mathbf{w}^{\wedge} \mathbf{2} / 4 A$
$(2)^{\wedge} 2 / 4(\Phi)=4 / 4 \Phi=1 / \Phi$
$\mathbf{1 / \Phi}=\boldsymbol{\Phi}-1$

\% Error for Calculated $\boldsymbol{\Phi}$-1 compared to actual $\boldsymbol{\Phi}$-1: <0.01\%

Phi (Φ) in Nature

$3+\frac{1}{3}$

